인사이트

아웃코드팀 이야기부터 자동화 인사이트까지

인사이트

데이터 자동화란(2)

아웃코드로 사용 중인 데이터를 맞춤형으로 자동처리하세요

데이터를 자유롭게 사용할 수 없는 이유

우리가 업무 중에 사용하는 데이터는 사실 자유롭게 사용하기에는 제약이 많습니다.

구글시트, 에어테이블, 엑셀, 노션 등에 있는 데이터는 그나마 사용자가 수작업으로 데이터를 가공할 수 있지만, 다른 애플리케이션이나 서비스, 내부 시스템, 데이터베이스 등에 있는 데이터는 사용하기 매우 어렵습니다.

우리가 업무 중에 사용하기 어려운 이유들은 아래와 같습니다.

  • 가지고 있는 데이터를 다른 서비스나 애플리케이션으로 매번 업로드하거나 개발을 통해서 연동해야 하며,
  • 이 경우 업무의 속성상 가지고 있는 데이터가 계속 삭제, 변경, 추가되는데, 이때마다 다시 업로드하거나 재 연동을 해야하는데, 매우 번거롭고 어렵습니다.
  • 또한 내가 원하는 조건에 맞는 데이터만 선별하여 확인하고 업로드하는 일은 더욱 어려우며, 원하는 시간에 연동하는 일도 마찬가지입니다.
  • 결국 우리는 엑셀이나 CSV 형태로 다운로드, 업로드 작업을 반복해야하며, 이 작업은 번거롭고 오래거리고 오류도 많고, 많은 경우 개발도 필요하기 때문에 엄청난 시간으로 수작업을 하거나, 아예 업무에 사용하지 않습니다.

예를 들어, 고객 데이터가 구글시트나 에어테이블에 있다고 가정해보겠습니다. 우리는 거기서 계속 고객 데이터를 수정하고 추가하고 관리합니다.

이제 고객 데이터를 가지고 다른 곳으로 보내거나(동기화), 메일이나 알림톡으로 보내는 경우를 생각해보면, 우선 두 가지가 필요합니다.

  • 내가 원하는 데이터만 그때그때 실시간으로 선별할 수 있는 기능 (이 기능이 없으면 결국 사용자가 스프레드시트에서 딱 그 순간에 맞춰서 손으로 선별하는 작업을 해야하는데 거의 불가능입니다.)
  • 내가 원하는 시간/요일에 메일이나 알림톡으로 데이터를 보내는 기능 (이 기능 역시 없으면 수작업으로 딱 원하는 시간에 맞춰서 해당 솔루션에 접속해서 해야합니다.)

위의 2가지 문제를 해결하지 않으면 우리는 데이터를 사용하는 것은 불가능에 가까워집니다.

데이터베이스나 데이터가 저장된 다른 곳으로 가면 우리의 문제는 더욱 복잡해집니다. 결국 엑셀로 이미 가지고 있는 데이터를 선별하여 다운로드하고 다시 다른 서비스나 솔루션에 업로드하고 그 솔루션의 해당 메뉴를 찾아서 실행하는 그야말로 낙후된 방법으로 합니다.

문제는 더 있습니다

내부에서 개발을 했다던가, 특정 솔루션을 사용해서 해결하는 경우가 있습니다. 이런 경우에 유지보수나 개선이 어렵습니다.

우리의 업무를 몇 년간 항상 똑같은 방법으로만 할까요?

초기에는 문제를 해결하는 듯 보였지만, 나중에 시간이 지나면 버려지는 것들이 많습니다. 우리의 업무도 데이터와 마찬가지고 계속 추가되고 변경되고 개선됩니다.

예를 들어, 상담에 대한 환영메세지를 계속 주구장창같은 내용만 같은 시간에 보내는 케이스와,

상담유형, 고객 정보 데이터를 실어서 메세지를 최적의 시간에 보내는 것을 물론, 내가 원하는 내용과 컨텐츠로 메세지를 계속 개선/업데이트하는 경우를 비교해하면, 그 비지니스의 성과 차이는 너무 큽니다.

만약 데이터가 다른 시트 파일에 있거나 에어테이블, 노션, 데이터베이스에도 있다면 이러한 데이터를 취합하고 동기화하는 일도 매우 어려워집니다. 심지어 필요한 데이터를 한곳에 모아서 보기도 불가능합니다.

우리가 회사에서 데이터 관련 작업으로 소모하는 시간은 인당 하루에 2~3시간이라고 합니다. 한달이면 90시간에 달하는 엄청난 시간입니다.

당신은 수십 배의 시간과 비용을 지불하고 있습니다

데이터 자동화란

위의 문제들을 해결하기 위한 서비스입니다. 데이터가 어디에 있던지 실시간으로 연결하고 원하는 조건과 시간에 자동처리하는 맞춤형 앱을 만들 수 있습니다. 아웃코드의 사용법은 매우 직관적이고 간단하여 개발이나 코딩 등 관련지식이 전혀 없는 일반 사람들을 대상으로 하고 있습니다.

아웃코드를 사용하면 아래와 같은 것들이 가능해집니다.

  • 사용하고 있는 데이터를 실시간 자동처리 가능
  • 데이터를 다른 솔루션으로 업로드나 연동개발하지 않고
  • 스케줄로 원하는 시간에
  • 필터로 원하는조건에 해당하는 데이터만
  • 다양한 솔루션으로 간단하게 자동처리

아웃코드의 데이터 자동화가 가지고 올 업무의 변화와 생산성의 향상이 그려지시나요? 이미 많은 회사들이 아웃코드를 통해서 앞서가고 있습니다.

데이터 자동화란(1)


2
mins read
인사이트

아웃코드와 재피어 기능 비교

소프트웨어 인더스트리는 10년이면 완전히 바뀝니다. 따근따근한 아웃코드와 자피어가 어떻게 다른지 비교해보세요.

먼저 가장 큰 차이점은 이벤트와 데이터입니다. 아웃코드는 데이터를 자동화합니다.

  • 이미 가지고 있고, 계속 추가/삭제/변경되는 데이터를 그대로 자동처리합니다.
  • 내가 원하는 조건에 맞는 데이터만 처리할 수 있습니다.
  • 내가 원하는 시간에 내가 원하는 조건의 데이터만 자동처리할 수 있습니다.
  • 그리고 항상 안정적으로 처리합니다.

그러나, 재피어는 이벤트를 자동화합니다. 즉, 새로운 응답이나 레코드가 발생했을 때만 자동화가 가능합니다.

  • 이벤트 자동화는 시간 개념이 없습니다. 오직 이벤트가 발생한 순간만 존재합니다. (재피어는 스케줄이 존재하지 않습니다.)
  • 이벤트는 휘발성입니다. 그 순간이 지나가거나 유실되면  자동처리를 할 방법이 없어집니다.
  • 그리고 우리가 가지고 있는 데이터는 이벤트가 아닙니다.
  • 내가 원하는 데이터란 개념이 없습니다. (필터 기능은 매우 약합니다.)
  • 그리고 불안정합니다.

핵심 기능별로 보면 아래와 같습니다.

핵심 기능 1 — 데이터

아웃코드의 핵심 기능은 데이터입니다. 자동화앱을 만들 때 실시간으로 구글시트, 에어테이블, 노션, 데이터베이스 등 우리의 데이터가 있는 곳에서 실시간으로 모든 데이터를 연동합니다.

그리고 조건에 맞는 데이터를 한번에 동시처리합니다.

재피어의 핵심 기능은 이벤트입니다. 재피어는 오직 이벤트가 발생할 때만 자동화가 가능합니다. 예를 들어, 아래 노션 데이터베이스에 아이템(New record, New item )이 추가되거나 업데이트된 경우만 가능합니다. 그 외의 경우에는 잽(자동화앱)를 만들 수 없습니다.

즉, 이미 가지고 있는 데이터는 재피어로 자동화할 수 없습니다.

핵심 기능 2— 조건 적용

아웃코드는 데이터 필터를 제공합니다. 자신이 원하는 조건에 맞는 실제 데이터를 보면서 설정합니다.

아웃코드의 필터 기능은 다양하게 지원합니다.

  • 문자열
  • 숫자
  • 날짜시간- 이전, 이후, (현재기준) N 분전/후, (오늘 기준) N일 전/후 등

반면에 재피어의 필터 기능은 제한적이며, 새로운 이벤트에만 적용됩니다.

  • 문자열
  • 숫자
  • 날짜시간 — 이전, 이후

핵심 기능 3 — 스케줄

아웃코드의 또다른 강력한 기능은 스케줄입니다. 스케줄은 자동화앱이 언제 실행되는지 설정하는 기능입니다. 아웃코드 스케줄은

  • 분단위
  • 시간 단위
  • 일단위
  • 요일별 — 월요일, 매주 수요일과 목요일, 매월 말일, 매월 첫일, 주중, 주말 등

재피어는 스케줄 기능이 없습니다. 따라서 자신이 원하는 시간에 자동화가 동작시킬 수 없으며, 오직 새로운 이벤트가 발생할 때만 동작합니다.

사용성

아웃코드는 가장 쉬운 사용성을 자랑합니다. 복잡한 로직으로 만드는 방식이 아닌 우리에게 친숙한 시트와 액션이 직관적으로 결합된 형태입니다.

그리고, 새롭게 출시된 도우미 기능은 어떤 자동화툴에서도 제공하지 않는, 문장으로 만드는 파괴적인 사용성을 제공합니다.

재피어는 일반 사용자분들이 사용하기에는 너무 어렵습니다. 😔

지원

아웃코드는 적극적이고 신속한 고객지원을 제공합니다. 아웃코드 내 채팅창으로 크고 작은 질문이나 궁금한 점에 대해서는 적극적으로 응답합니다. 그리고 사용자의 새로운 기능이나 지원 요청에 대해서는 아웃코드팀이 직접 해결해드리고 있습니다.

재피어는 질의에 대한 응답을 받기도 어렵고, 커뮤니티를 하루 종일 찾아야 합니다. (그리고 재피어가 문제를 해결해주지 않습니다. )

안정성

자동화가 정확하게 동작하지 않는다면 큰일입니다. 아웃코드는 시장의 자동화 서비스 중 독보적인 안정성을 자랑합니다. 아웃코드 출시 이후 실패율은 0%에 가깝습니다.

재피어는 불안정하며, 실패율이 높습니다. 이미 알려진 문제로 특정 순간에 이벤트가 많이 발생하면 누락이나 오류가 납니다. 재피어를 사용하는 해외에서는 재피어를 간단한 내부 알람용으로 사용하며, 데이터나 고객용으로 사용하지 않습니다.

재피어는 이벤트를 연결하기 때문에 제한적입니다. 또한, 데이터를 처리하지 못하고 필터 기능은 약하며, 스케줄 기능은 없습니다. 재피어가 14년전에 앱을 연결하는 서비스를 만들었을 때는 혁신적인 서비스였지만 이제 사용자의 요구 사항이 높아지고 자동화 시장이 변하고 있습니다.

아웃코드는 업무에서 발생하는 데이터를 자동처리하기 위해서 만들어진 서비스로 팀간의 협업, 통합 관리, 다양한 자동화 시나리오 등이 가능합니다.

회사의 운영을 생각한다면, 아웃코드를 선택하세요.


2
mins read
인사이트

당신은 수십 배의 시간과 비용을 지불하고 있습니다

엄청난 비용과 비효율을 가만히 보고 계시지 마세요.

우리나라의 2022년 근로자 평균임금은 327만 4천원입니다. 주당 40시간, 월 120시간으로 나눈다면 시간당 2만원 정도됩니다.

예를 들어, 고객에게서 주문, 상담, 신청 등이 들어오면 그 것들을 취합하고, 건별로 대응하는데 숙련된 사람이라도 10분은 소요됩니다. 하루에 10건이 들어온다면 매일 100분, 금액으로 환산한다면 적어도 하루에 3만원, 한달이면 90만원에 해당하는 비용이 지출됩니다. 우리가 수작업으로 하는 일은 정말 많은습니다. 간단하게 일반적인 케이스들만 리스트업만 해도,

  • 온/오프라인 행사/이벤트 참석자에게 전날 오후 2시에 안내문자
  • 배송 접수에 되면 3분만에 안내 알림톡
  • 고객별 적립 포인트가 1만 이상인 고객에게만 매일 8시에 안내 문자
  • 장바구니에 상품을 담은 고객에게 아침 8시에 안내 이메일
  • 매 10분마다 에어테이블에서 구글시트로 업데이트
  • 매 5분마다 에어테이블에 데이터를 자동으로 데이터베이스에 업데이트
  • 상담예약 확정 안내 알림톡과 다음날 아침 10시에 상담내역 발송
  • 구글시트에서 데이터베이스로 새벽 6시에 자동 업데이트
  • 지원자 중 합격, 불합격자에게 대해서 자동 안내 이메일 발송
  • 프로모션 시작일에 구매금액별로 알림톡과 이메일로 나누어서 발송
  • 신규 입사자에게 오전 10시에 입사절차 안내 이메일 자동 발송
  • 각 지점별로 당일 업무 사항을 오전 7시에 문자 발송
  • 30일 전에 구매한 고객에게 재구매 안내 이메일을 매일 아침 9시에 발송
  • 매출 및 고객 현황 숫자를 매일 9시에 슬랙을 자동 발송

반복적인 작업을 하다보면 정작 중요한 부분에 개선을 하지 못합니다. 고객별로 맞춤형으로 대응을 하거나 유형별로 나누어서 취합하거나 하는 일은 추가적인 작업입니다. 이러한 작업이 추가된다면 건당 처리하는 평균 시간은 몇 배로 늘어납니다. 환산하면 매월 한사람의 인건비는 소모됩니다.

문제는 여기서 그치지 않습니다.

내부인력은 24시간 일하지 않지만, 우리의 고객이나 사용자는 24시간 활동합니다. 그리고, 불안한 전제는 사람이 절대 실수하지 않는다는 기대를 가지고 있습니다. 고객에게 잘못된 이름, 주소, 결제 금액이나 다른 안내를 보내거나 일자나 링크 등이 잘못된 경우는 자주 발생합니다.

또한, 데이터를 취합하는 일은 수동으로 하다보면, 나중에는 데이터가 뒤죽박죽으로 되어 있어서 쓸모가 없거나 뭐가 뭔지 알 수 없게 되는 경우도 빈번합니다.

한 사람이 그 일만 하지 않습니다.

회사에서는 한 사람이 하루에도 다양한 일을 합니다. 반복적인 일이 많아질 수록 사람은 지치고 결국, 더 나은 서비스나 운영, 판매를 위한 일은 어려워집니다.

고객에게 몇 분내로 신속하게 대응하고, 최적화된 안내와 메세지를 보내고, 고객 데이터를 자동으로 취합하는 일 등은 생각하기 어려운 일이 되어, 시간이 지나도 우리의 서비스는 나아지지 않습니다.

아무런 지원이나 도구없이 업무를 개선하고 서비스나 매출을 올리라고 하는 것은 비현실적인 이야기가 됩니다.

그리고, 더 많은 사람들이 데이터와 조금이라도 연계된 업무를 하고 있다면 비용과 시간은 기하급수적으로 늘어납니다.

고객을 놓치게 됩니다.

많은 마케팅과 홍보활동을 통해서 어렵게 우리 서비스에 관심가지게된 사용자에게 우리의 업무 시간, 더 정확하게는 우리의 여유시간에 맞추어서 기다리라고 하는 가정은 비현실적입니다. 이미 다른 서비스를 선택했을 것입니다. 이미 시장에는 수많은 선택지와 대안이 있으며, 사람들은 고객 대응이 빠르고 나를 알아주는 서비스를 선택하게 됩니다.

어떻게 해야할까요?

자동화 서비스를 도입해서 최대한 반복을 없애고 자동으로 해야합니다. 자동화 서비스를 선택할 때 중요한 점은 아래와 같습니다.

  • 안정적인가: 처리해야할 건수나 양이 많아도 누락이나 오류가 없이 안정적으로 실행되어야 합니다. 우리의 업무나 고객 대응에 1%만 문제가 발생해도 불안한 파급효과는 커집니다.
  • 즉시 자동화할 수 있는가: 자동화의 주 사용층은 운영업무에 관련된 사람입니다. 개발이나 자동화 관련 지식이 없어도 쉽고 빠르게 원하는 자동화를 지속적으로 만들고 실시간으로 개선할 수 있어야만 효과가 극대화됩니다.
  • 함께 할 수 있는가: 한사람만 몰래 만들어서 사용하는 자동화는 투명성에도 문제가 생기며, 더 나은 아이디어를 가진 사람들과 협업할 수 없기 때문에 결국 누군가가 언제 만들기는 했는데 잘 되는건지 알 수 없게 됩니다.

과거에 만들어진 자동화 서비스나 프로그램들은 이러한 요건을 고려하지 않았습니다. 아웃코드는 시장에서 유일하게 위의 개념을 바탕으로 개발되었으며, 현재 많은 중소기업, 스타트업, 1인 창업가 들이 계속 엄청난 절감효과와 매출 상승 효과를 경험하고 있습니다.


2
mins read
인사이트

자동화 진단 서비스

아웃코드 전문가팀의 무료 진단 서비스를 받아보세요.

아웃코드는 1인 창업자, 사업자, 중소기업부터 스타트업, 초대형 글로벌 테크 기업까지 많은 고객분들의 다양한 업무들을 자동화하는데 도움을 드리고 있습니다.

아웃코드로 사용자 분들이 직접 만드신 자동화앱의 수가 드디어 1만개를 넘었습니다. 국내에서 가장 빠르게 성장하는 노코드 데이터 자동화 서비스로 출시 이후 정말 다양한 사례와 자동화 케이스를 접하고 같이 고민하고 지원해드렸습니다.

우리 회사의 운영 수준을 높여서 한단계 도약하고 파괴적인 생산성 증대와 고객, 매출 증대효과까지 만들어 보세요.



국내 최고의 데이터 자동화 전문가, 아웃코드 전문 팀의 완전 무료 자동화 진단 서비스를 받아보세요.

“사실 뭘 자동화하고 싶은지 모르는 경우가 많아서.. 해보신 분들이 어떤 업무을 자동화했는지 궁금해요"

“어떤 업무를 반복하는지 궁금하고 저도 자동화 좀 해보려구요…”

"노션, 에어테이블, 구글시트, 데이터베이스에서 자동으로 해야할 것들이 많아요"

"내부 시스템, 데이터베이스, 사용 중인 솔루션 들을 연결해서 최대한 자동화하고 싶어요"

"회사의 업무와 운영 상에서 데이터 자동화가 필요한 영역을 찾고 싶어요"

"고객경험부터, 운영까지 조직 전반의 수준을 높이고 최고의 성과를 내고 싶어요"

"회사에서 데이터 자동화를 도입하려고 하는데 어느 영역부터 시작해야하는지 알고 싶어요"

아웃코드팀에서 1만 건이 넘게 축적된 노하우를 방출합니다. 지금 바로 자동화 수준을 진단받아보세요.


아웃코드
팀은 시장에서 가장 빠르게 성장하는 자동화 서비스를 제공하고 있습니다.

2
mins read
인사이트

최대한 자동화하세요

자동화로 앞서가는 회사들의 이야기 - 1탄

1인창업자, 스타트업, 소규모 기업들은 사람이 많은 업무를 하는 경우가 많습니다. 자동화되지 않은 업무들은

  • 사람이 하기 때문에 24시간 동안 수시로 대응하기 어렵고
  • 우리 고객과 업무에 꼭 맞는 시나리오보다 임의로 하는 업무들이 많고
  • 한사람이 할 수 있는 업무량은 정해져 있고, 해야할 일은 계속 늘어나며
  • 또한 개발을 해야만 해결되는 업무들도 있기 때문에
  • 항상 전체 운영 비용이 높거나 계속 높아집니다.

서비스 운영이나 판매에서 비용을 높이고 대응 시간을 늦추는 주요 원인이 됩니다.

자동화하면 어떤 효과가 있을까요?

아웃코드로 회사 운영을 자동화를 하신 분들이 이야기를 들어보면

  • 매출이 올랐어요
  • 해야할 일이 생각나면 바로바로 자동화로 해결해요
  • 데이터를 매일 보다보니 많은 아이디어가 떠올라요

위의 이야기를 가장 많이 하세요. 과연 실제 고객 사례에서 어떻게 연결되는지 알아볼까요?

1인 창업자의 케이스

온라인으로 서비스 상품을 파는 회사의 창업자분의 고민은 고객문의와 상담, 확인 등의 중요한 업무들을 직접하고 계셨는데, 아무래도 수시로 확인, 대응하기 어려워서 그 다음날 처리하거나 심지어 놓치는 경우도 많았어요. 더 큰 문제는 그 사이에 잠재 고객이 다른 회사의 상품을 보거나 관심이 식어버리는 경우가 많아서 고민이셨어요.

아웃코드를 이용해서 구글시트로 들어오는 문의에 대해서, 유형별로 딱 맞는 내용의 알림톡을 바로 보내고, 확인이나 접수에 대한 알림도 이메일로 자동화하셨습니다.

그리고, 특히 수십 개의 개별 서비스 상품별로 자신만의 메세지가 담긴 알림톡을 보내기 시작하면서 매출이 빠르게 늘기 시작했고, 불과 2개월 만에 매출이 4배 상승하셨습니다. 지금은 서비스 상품을 계속 늘리고, 다양한 업무를 아웃코드로 처리하면서 인건비 부담없이 해결하고 계십니다.

교육업체 케이스

교육 서비스를 제공하는 회사의 고민은 수작업이 너무 많다는 점이였습니다. 하루에도 수백통의 전화로 일일히 확인해야했으며, 심지어 통화가 안되거나 내용을 잊어버리는 경우도 많아서 많은 문제가 있었습니다.

아웃코드로 교육 코스별, 참여, 평가, 후속 단계별로 긴급한 경우는 알림톡, 다른 경우는 이메일로 자동화를 하기 시작했고, 여러군데 흩어져서 관리하던 데이터 정리 작업도 자동화로 해결했습니다.

지금은 전 직원이 자동화를 만들 수 있기 때문에 개설되는 교육 과정의 준비와 홍보 작업도 아웃코드로 자동화하기 시작했고, 전체 인력은 더 고객에게 유용한 코스를 만들고 개선하는데 역량을 집중하고 있습니다.

스타트업 케이스

중개 플랫폼을 개발하는 팀의 고민은 개발 업무가 너무 많고 운영에 필요한 작은 기능 하나도 오래 걸리는 일이였어요. 특히 고객에게 알람을 보낼때와 외부 파트너사들과 데이터를 주고 받을 때 어려움이 많았습니다.

데이터베이스에 있는 데이터를 기반으로 고객에게 알림성 이메일들을 보낼 때, 본문 내용과 발송 조건이 계속 바뀌면서 해당 코드를 연속적으로 배포하는 일은 문제가 많았습니다. 또한 파트너사에서 하루에 한두번씩 스프레드시트로 데이터를 주고 받아야 하는데, 이 때마다 개발자에게 요청해서 다운로드받아서 엑셀작업을 하고 보내는 일은 정말 소모적이었습니다.

이제는 아웃코드로 모든 기능들을 다 개발하지 않고, 데이터베이스 업데이트와 같은 작업들을 아웃코드로 처리하면서 개선 속도를 몇 배 이상으로 높이고 있습니다. 또한 운영업무를 하시는 분들이 직접 데이터를 보기 때문에 정확하고 고객에 맞는 업무 시나리오를 반영하고 있습니다.

이 외에도 커머스, 학원, 세무/법무 등의 전문 서비스 등 아웃코드로 매출을 늘리고 자동화하는 사례들이 많이 있습니다. 2탄을 기대하세요.

2
mins read
인사이트

아웃코드로 할 수 있는 것들

그리고 자동화 1개 vs 80개의 차이

우리 팀이 하는 일은 노코드로 누구나 쉽고 간편하게 운영에 필요한 자동화를 만들 수 있도록 하는 서비스를제공합니다.

저희는 가장 단순하고 간단명료하며, 직관적인 자동화 서비스를 제공하려고 노력하고 있습니다.

자동화 1개 대 80개

만약 우리가 예약 메세지를 자동화한다고 할때 과연 ‘예약접수'라는 오직 1개의 경우만 존재할까요?

예약 내역과 방문할 지점에 따라 각각 다른 메세지를 보내야할 수도 있고, 즉시 빠르게 보낼 수도 있고 다음날 아침에 보내야할 수도 있습니다. 그리고, 해당 상품의 특별한 장점, 이번달의 특별한 혜택을 알려줘야할 수도 있고 자주 방문하는 사람을 구분해야만 할 수도 있습니다. 아니면 직접 고객 데이터를 보면서 선택하고 보내야할지도 모릅니다.

개발을 전혀 모르는, 불과 2달 만에 매출이 4배가 성장한 1인 기업이 구글시트>예약 알림톡을 보낼 때, 경우에 따라 알림톡 템플릿을 80개로 나누어서 사용하고 있습니다.

이 분이 하셨던 일은 1개의 구글시트에 쌓이는 모든 예약을 개별 관심 상품별로 나누고 그에 따른 적합한 메세지를 보낼 수 있도록 아웃코드 자동화에서 수십개의 시트로 복제하고 시트별로 다른 필터조건과 알림톡을 연결한 것이였습니다.

어떤 일들이 가능한가요

아웃코드는 코딩과 개발이 전혀 필요없이 웹 브라우저만 있으면 수십개의 앱을 원하는대로 연결해서 자동화를 만드는 서비스입니다.

구글시트, 알림톡, 엑셀, 노션, 에어테이블, 지메일, 슬랙, 팀즈, 잔디, 메일침프, 메일건, 데이터베이스 등등을 사용할 수 있습니다.

어떤 시나리오로, 어떤 케이스로 자동화를 만드시는 것은 제약이 없으며, 코딩도 필요없습니다.

시장에서 유일하게 자동화의 갯수나 사용자로 절대 과금되지 않고 셀프서비스로 어떠한 추가 비용도 없습니다. 오직 실행회수만으로 과금되기 때문에, 수백~수천개의 자동화들을 만드는 사용자분의 등장을 기대하고 있습니다.

아웃코드 자동화의 사용법은 항상 똑 같습니다. 무엇이든 원하시는 앱을 연결하시고 원하는 조건을 설정하면 아웃코드가 자동으로 실행합니다.


2
mins read
인사이트

앱(서비스)를 처음 개발할 때 꼭 주의할 점

앱/웹 개발시 안타깝게 놓치는 점들

회사나 스타트업에서 멋진 서비스를 만들면, 고객 또는 사용자가 들어옵니다. 초기부터 어떻게 운영할지 미리 잘 알고 있어서 많은 노력과 리소스로 잘 만드는 경우도 있지만, 대부분 예상하기 어려운데다 제한적인 리소스와 시간으로 오직 앱/웹만을 만드는 데 집중하게 됩니다.

특히 초기 스타트업의 앱이나 서비스 페이지를 개발할 때 아주 기초적인 운영을 위한 기능을 일부 만들기도 하지만, 이것은 당연히 충분하지 않습니다. 실제 고객이 발생하고 매출이 생기면 우리의 서비스는 혼재된 상태가 되고 문제는 해결되지 않는 카오스 상태가 됩니다. 그리고 어렵게 유입된 소중한 고객들은 결국 떠나가게 됩니다.

운영이 안되는 우리의 내부 모습

우리가 서비스를 개발할 때 놓치면 안되는 경우를 모아봤습니다.

내부에서 자체 개발하는 경우

가장 문제가 적게되는 케이스입니다. 내부의 개발자나 사업개발, 기획, 운영팀이 유기적으로 움직여서 운영에 필요한 기능들을 만들어내고 자동화된 업무가 구현됩니다.

그러나, 대부분의 경우 내부 인력과 조직이 충분하지 않기 때문에 한 명이 다양한 역할을 해야하며, 업무 로드는 크게 발생합니다.

자체 개발하는 스타트업에서 처음부터 개발자에게 폭탄 투하해서 전체 모든 기능을 다 개발하려고 시작하지만, 잘 되지 않습니다. 특히 실제 운영에 예상되는 기능들을 미리 개발하는 것은 더 어렵습니다.

운영에 필요한 기능은 상당히 많은 데, 실제로 아래와 같은 기능들이 필요합니다.

  • 조회화면 1,2,3,4,…..
  • 데이터를 처리하는 자동기능 1,2,3,4,…..
  • 백엔드와 연동하는 자동화 기능 1,2,3,4,…
  • 고객 메세징 기능 1,2,3,4,….

이때, 자체 개발하기보다는 아웃코드로 빠르게 운영에 필요한 기능들을 자동화로 구현하고 계속 실험하고 개선하면서 성장에 집중하는 전략을 매우 유용합니다. 이미 많은 스타트업이 아웃코드를 운영 자동화툴로 초기부터 도입하여 서비스를 만들고 있습니다.

외주 또는 협력 형태로 개발하는 경우

개발자가 1명이거나 외주로 개발할 때 소위 어드민 기능을 하나 만들어서 주는데, 이것은 당연히 충분치 않습니다. 대기업이 아닌 이상, 요청 사항부터 실제 구현까지 여정이 복잡하고 비용과 시간이 소모되며, 하나의 자동화가 개발로 만들어졌다고 해서 나중에 개선이나 변경점이 없는게 아닙니다.

아웃코드 고객 중에 1년전에 외주로 개발하셨고, 이후에 운영이 답답해서 아웃코드를 도입 후 내부 시스템/DB에 쌓여진 데이터를 난생 처음 보시고 놀라는 경우도 있었습니다.

개발사 입장에서도 모든 요청을 개발하기는 어려운데, 예를 들어

  • 고객 메세징 자동화 기능은 개발 자체가 난이도가 높고
  • 운영에 필요한 자동화 요청을 일일히 구현하기도 어려우며
  • 한번 만들어진 것은 개선하는 일은 더욱 어렵습니다.

아웃코드 고객 중에 외주개발은 진행하면서 아웃코드를 개발 시작단계부터 도입하여 운영에 필요한 자동화는 직접 만드시고, 개발사는 핵심에만 집중하고, 나중에 자체 인력이 충원되었을 때는 대비하시는 분들도 많습니다.

노코드 베이스로 개발하는 경우

웹플로우, 버블, 에어테이블 등을 사용하여 자체적으로 서비스를 만드는 경우가 있습니다. 문제는 이들 툴의 고유영역(예를 들어, 버블-앱개발)외 제한이 많아서 우리의 서비스 운영이 종속되어 버리는 경우가 발생합니다. 이 문제 해결을 위해서 재피어같은 툴로 앱 이벤트를 이리저리 엮어서 한 두개는 해결하지만 결국 한계에 부딪히게 됩니다.

노코드툴을 고유 기능은 그대로 집중하고, 데이터는 노코드 데이터 자동화, 아웃코드를 이용하면 많은 문제가 쉽게 코딩없이 스스로 해결할 수 있습니다. 특히 확장된 기능까지 제공하기 때문에 서비스를 고도화된 방식으로 운영하는데 큰 도움이 됩니다.

처음 개발할 때 앱만 개발되면 운영은 별문제가 아니거나 자동으로 된다는 생각을 가지시는 경우가 많습니다. 아무리 멋진 앱도 자동화된 운영이 없다면 실험적인 테스트 수준으로 멈추게 됩니다. 서비스를 개발하신다면 아웃코드로 운영 부담을 해결해보세요.


2
mins read
인사이트

데이터 자동화란

운영업무와 밀접한 데이터 자동화

많은 회사에서 데이터로 할 수 있는 것들은 제한적이에요.

예를 들어, 고객 데이터를 마케팅에 직접 사용하거나 결제 데이터를 운영 프로세스에 바로 자동화는 일들은 쉽지 않습니다. 회사의 운영업무 - 사업개발/운영/마케팅/영업/재무/인사- 에 데이터를 필수적으로 사용 중인데, 이런 데이터를 우리의 업무에 꼭 맞게 자동화하기에는 장애물이 너무 많습니다.

고급 개발자가 아닌 대부분의 사람들이 데이터를 자신과 팀의 업무에 직접 활용할 수 없다는 사실입니다.

시장에서 회사의 다양한 업무에 맞게 데이터를 쉽고 간편하게 활용하기 위한 서비스나 솔루션은 찾아볼 수가 없습니다.

만약 데이터 자동화가 없다면 아마 우리는 아래와 같이 사람이 중간 역할을 하는 제한적인 방식으로만 사용해야 합니다.

데이터 자동화(Data Automation)

아웃코드는 복잡하고 어려웠던 데이터 자동화 기술을 모든 사람들을 위해서 제공하고 있습니다. 가장 간단한 노코드 방식으로 제공합니다.

데이터 자동화란 운영에 필요한 데이터와 앱(어플리케이션)을 업무에 맞게 직접 연결하여 원하는 방식으로 자동화는 것입니다.  


  • 다양한 데이터의 연결과 조회
  • 간단한 필터 적용
  • 원하는 스케줄에 구동
  • 복수의 앱과 데이터를 연결하여 처리 가능

아웃코드를 사용하면 업무의 효율이 급격하게 향상되는데, 간단명료하고 누구나 쉽게 할 수 있는 사용성으로

2
mins read
인사이트

나만의 서비스를 차별화하는 방법

우리가 데이터 자동화를 꼭 해야하는이유

가장 현실적인 이유들은 무엇일까요?

노코드, 데이터 자동화하면 개발자없이 업무용 프로그램을 만드는 것을 의미합니다. GPT에 물어보면 아래와 같은 대답을 알려줍니다.

OpenAI, GPT 3.5에 물어본 결과

위의 이유를 보면 왠지 큰 회사만 해당되는 것 같고, 무언가 추상적이며, 잘 와닿지 않습니다.

아웃코드팀이 바라보는 데이터 자동화를 해야하는 현실적인 이유는 아래와 같습니다.

  1. 운영 원가의 절감
  2. 우리 서비스와 운영의 차별화
  3. 고객 충성도, 매출 등 비지니스의 향상

원가의 절감

우선 원가의 절감 측면에서는 노코드(No-code) 툴을 사용하면 개발 리소스를 줄이거나 없애는 효과를 가지고 오는 것은 분명하지만 어떻게, 얼마나에 대한 감이 잘 잡히지 않습니다. 예를 들어, 아웃코드의 대표적 케이스인 메세징 자동화의 사례로 설명드리면 쉽습니다.

  • 어떤 ooo이라는 프로그램을 이용하여 구매확정, 리뷰 등의 알림톡을 보낼 수 있는데, 이때 비용이 발생합니다. 대부분 이러한 솔루션은 특정 목적으로만 서비스되기 때문에, 그들의 개발비용, 적정 이익율 등을 감안하여 가격이 책정됩니다.
  • 예를 들어, 알림톡 1건당 9원인데, 해당 서비스를 이용하면 건당 십 몇원 또는 심지어 백 원이 발생할 수도 있습니다. 이 비용은 만약 우리가 직접 발송시스템과 연동 또는 개발하면 절감할 수도 있는 비용이기도 합니다.
  • 어찌보면 해당 기능을 제공받는데 지불해야하는 당연한 금액일 수도 있지만, 아닐수도 있습니다.
  • 그리고, ooo이라는 프로그램이 더 많은 기능을 제공하면 이제 비용은 나의 의도와 상관없이 계속 증가합니다. 특히 사용량이 증가하면 고객이 내는 비용은 훨씬 더 빠르게 증가합니다.
  • 하지만, 고객은 다른 대안이 없기 때문에 생각보다 더 많은 비용을 내고, 우리 회사 원가의 부담은 늘어만 갑니다.

만약 나와 팀이 특별한 제약없이 직접 메세징 자동화를 만들 수 있다면, 우리는 사실상 원가 수준에서 비용을 크게 줄일 수 있습니다.

  • 메세징 자동화를 시나리오별로 계속 만드는 비용 : 0원
  • 발송건당 9원 (원래 알림톡 발송에 내야하는 비용)
  • 실행당 1원 (아웃코드에 지불하는 비용)

우리 서비스의 차별화

다시 위의 문제로 돌아가서 000 솔루션을 이용하거나 자체 개발하더라도 차별화는 거의 없거나 초보적인 수준에서 머무르게 됩니다. 왜냐하면 노코드 솔루션의 근본 가치인

“누구나 언제든지 쉽고 간편하게 수정할 수 있다"

어렵기 때문입니다.

  • 특정 솔루션은 사용하면 환영, 프로모션, 안내 구매 확정이나 리뷰가 필요할때 모든 사용자에게 항상 똑 같은 내용과 형태의 알림톡이 똑 같은 시간에 발송됩니다. 이 정도로 충분하다고 생각할 수도 있지만, 우리의 사용자가 똑 같은 한사람이 아닙니다.
  • 우리가 만약 잘게 쪼갠 사용자 별로 시나리오를 구성하고 각각 최적화된 메세지 내용과 반응이 가장 좋은 시간대를 고민하기 시작한다면, 안타깝게도
  • 이미 사용 중인 솔루션이 해당 기능을 제공하지 않거나,
  • 제공하더라고 고급기능이니 가격이 급증하게 됩니다.

만약 동일한 가격으로 위와 같은 자동화들을 내 마음대로 만들 수 있고 수정할 수 있다면, 우리는 다른 고민을 하게 됩니다.

  • 우리 서비스를 어떻게 시장에서 차별화할 것이며,
  • 우리의 고객은 누구이며,
  • 어떤 것이 그들에게 최적인가

라는 가장 중요한 고민을 통해, 서비스 차별화를 이루고 빠른 시간 내 성장을 이루어내는데 집중하게 됩니다.

고객 충성도와 매출 등 비지니스 향상

원가를 절감하고, 고객에게 최적의 경험을 제공하여 충성도와 매출 등 결정적인 비지니스 향상을 가져오게 하는 일은 매우 중요합니다.

메세지를 보내는 일, 고객 데이터를 체계적으로 관리하는 일 등 우리가 반드시 해야할 일에 집중하는 것은 멋진 상품을 구성하고 소셜미디어에서 유행을 타는 일만큼 중요합니다.

불과 몇 개월 만에 매출이 4배가 상승한 1인 여행사, 일하는 방식이 바뀐 학원, 최대한 많은 업무를 자동화하여 효율을 극대화하는 스타트업 등 다양한 회사들이 아웃코드를 통해서 앞서가고 업계의 선두로 탈바꿈하고 있습니다.

우리 주변의 변화는 눈에 띄는 것보다 빠르게 일어나고 있습니다. 아웃코드를 시작해보세요.

2
mins read
인사이트

사업개발과 데이터 자동화

새로운 비지니스에 데이터 자동화가 필요한 이유

Data Automation Apps (or tools)는 운영과 개발 여정 상에서 발생하는 니즈를 빠르게 해결하는데 사용되며, 신사업개발, 새로운 서비스 출시, MVP와 시장 검증에 사용되고 있습니다.

내부 자동화 앱이 필요한 이유

새로운 서비스를 만드는 일은 복잡합니다. 그리고 여정 상에 발생하는 다양한 니즈와 필요 사항을 신속하게 해결하는 일은 더욱 쉽지 않습니다.

  • 대부분 최소 수준의 기능 요구 사항이 다양하게 존재
  • 제한된 시간과 리소스로 해결 어려움
  • 자주 변경되는 사항과 반영의 어려움
  • 새로운 서비스에 대한 고객경험을 포함한 효과적인 판단이 어려움

이때 데이터 자동화앱을 사용한다면 위의 문제를 해결하는 방법이 됩니다. 최적화된 내부/고객용 메세징을 자동화하거나, 필요한 데이터들을 즉시 찾거나, 다양한 앱과 시스템간에 데이터를 빠르게 연결하는 것들은 좋은 사례입니다.

또다른 장점은 새로운 서비스의 미비점이나 문제가 발생하면 지연하거나 해결을 포기하는 대신에 구성원들이 스스로 즉각적으로 대응할 수 있습니다. 이러한 즉시성은 사업개발에서 가장 중요한 기능자체가 아니라, 어떤 방법이 최선인지 대응의 우선순위를 바꾸어 줍니다.

데이터 자동화를 만드는 방법

Data Automation Apps는 사업개발, 엔지니어링, 운영을 포함한 다양한 구성원들이 사용하는 CRUD 도구부터, 자동화된 업무를 구성하는 워크플로우, 데이터와 앱을 연결하는 통합 도구 등이 있습니다.

데이터 자동화의 핵심은 예상되는 업무의 흐름 또는 비지니스 워크플로우에 따라 구성하는 것입니다. 아래와 같은 기본으로 제공되는 기능들을 사용하여 우리의 서비스에 맞게 조립하는 일입니다.

  • 데이터의 자동처리
  • 다양한 데이터를 연결과 통합
  • 데이터에 대한 신속한 접근
  • 내부의 시스템, 플랫폼 등과 데이터를 연동
  • 내부의 로직을 신속히 반영

Buy or Build

어떤 부분에 자동화가 필요한지 파악하는 것이 우선입니다. 예를 들어 사용중인 앱에 API를 연결하는 일이 쉽지 않을 수도 있습니다. 여러 곳에 떨어진 데이터를 자동으로 연결하는 것도 만만치 않은 일입니다. 운영상에 필요한 데이터나 각종 지표 들을 관리하기도 쉽지 않습니다.

스프라이프의 CTO는 아래와 같이 말한적이 있습니다.

“자체개발은 업무의 Scale에 따라 결정된다. 회사에서 Github을 사용 중인데, 만약 Github을 직접 개발할때 소모되는 노력은 가치가 없다”

아웃코드를 사용하면 사업개발 초기부터 예상되는 문제에 대한 자동화를 구성하고 지속적으로 개선할 수 있으며, 출시 이후에 발생하는 문제에 대해서도 대응이 가능합니다.


2
mins read
인사이트

데이터를 어디에 저장하고 있나요?

우리가 업무 중에 사용하는 데이터소스에 관한 통계

작년에 아웃코드팀에서 간단한 설문을 진행한 적이 있습니다. 아래와 같은 한가지 질문이었습니다.

(해외) Which data sources are you using at work?

(한국) 어디에 데이터를 저장하고 계신가요?

응답해주신 분들의 직군은 운영, 사업개발, 마케팅, 개발(Developer), 데이터분석과 세일즈로 다양하게 분포되어 있으며, 대부분 비개발자(Non-technical) 분들이 답변해주셨습니다.

결과는 아래와 같습니다.

먼저 한국(내림차순);

엑셀 (37%), 구글시트(22%), MySQL(12%), PostgreSQL(8%), MariaDB(4%), Firebase(2%), AWS S3(2%), 그외 기타(14%)

업무에서 스프레드시트를 사용하는 비중이 높습니다. 그 뒤로는 회사의 데이터가 저장되어 있는 데이터베이스, 그 중에서도 MySQL, PostgreSQL 등의 비중이 높습니다.

해외(내림차순);

구글시트(24%), 엑셀 (19%), MySQL (10%), PostgreSQL(8%), Redshift (10%), MSSQL(5%), MongoDB(5%), Firebase(5%), Others (10%)

스프레드시트의 비중이 43%로 낮아졌습니다. 데이터베이스는 편중없이 고르게 분포되어 있는 것 같습니다.

추정할 수 있는 것들

설문의 모수가 크지 않아서 통계적인 유의미를 가질지는 모르겠지만, 힌트정도는 될 것 같습니다.

  • 파일시스템인 스프레드시트의 비중이 줄고 있는 것 같습니다. 불과 수년전의 업무 환경을 생각해보면 엑셀의 비중이 절대적이었습니다.
  • 데이터 리터러시(Data Literacy)가 향상되는 것 같습니다. 업무들이 점점 데이터 친화적이되면서 자연스럽게 데이터를 업무에 활용하고자 하는 케이스들이 확산되는 것 같습니다.

2
mins read
인사이트

아웃코드를 200% 활용하기 위해서 필요한 것

아웃코드를 잘 사용하는 사람들의 공통점

아웃코드는 데이터를 누구나 코드없이 자동화하는 솔루션입니다. 데이터를 사용자가 직접 보면서 원하는 조건과 앱으로 자동처리할 수 있는 새로운 자동화툴입니다.

TL;DR: 자동화툴을 만들기 위해서 개발지식은 필요없습니다. 데이터로 업무를 개선하는 마인드셋이 중요합니다.

앞으로 업무 환경에서는 나와 팀의 업무에 맞는 자동화 툴을 사용하여, 여기저기 숨어있는 반복적이고 소모적인 일들은 하지 않을 것이라고 생각합니다. 업무 중에 불필요하게 시간을 소모되는 부분을 없애고, 단순하거나 반복적인 작업으로 스트레스를 받는 일은 사라질 것입니다.

아웃코드와 같은 자동화 툴을 사용하여 더 많은 팀과 사용자들이 업무 상에 필요한 데이터들을 자동으로 처리하는 맞춤형 자동화툴을 직접 만들고 있습니다. 여기서 우리팀이 발견한 재미있는 사실은 아웃코드 사용자 중에서도;

  • 세분화된 맞춤형 자동화툴을 만드는 경우와,
  • 단순한 자동화에 만족하는 경우도 있다는 사실입니다.

어디서 이런 차이가 발생하는지 원인을 찾기 위해서 먼저 사용자 분포를 보면 아래와 같습니다. (중복카운팅 허용)

  • 사업개발 (62%)
  • 운영 (49%)
  • 마케팅 (34%)
  • 데이터분석 (28%)
  • 세일즈 (21%)
  • 개발 (19%)
  • 기타 (4%)

아웃코드가 노코드 솔루션이라는 점과 사용자 분포를 볼 때, 코딩과 같은 전문적인 개발지식이 사용성의 차이를 가지고 온다고 보기는 어렵습니다.

사용자 인터뷰에서 중요한 사실이 발견되는데, 자신과 팀의 업무 시나리오에 대한 이해가 차이를 만듭니다. 예를 들어, 업무를 세분화하고 로직화하여 개선하고자하는 마인드셋을 가진 사용자는;

  • 데이터와 고객의 흐름을 먼저 생각하고, 다양한 시나리오별로 원하는 자동화를 만듭니다. 중간에 동료들과 협업을 통해서 높은 수준의 자동화툴들을 만들기도 합니다.
  • 반면에 업무를 단순하고 막연하게 생각하시는 분들은 개선점을 찾지 않습니다.
  • 예를 들어, 고객 경험도 잘 개선하기 위해서는, 세분화된 고객 상황과 데이터에 따라서 여러개의 자동화툴들이 필요합니다.

맞춤형 데이터툴은 막연한 개념이 아닙니다. 우리의 성장과 성과를 위한 고민과 생각, 아이디어를 현실화하기 위해서 필수적인 툴입니다.

아웃코드를 잘 사용하기 위해서는 개발지식이 아니라 마인드셋이 중요합니다

2
mins read
인사이트

우리의 일과 라이프, 그리고 자동화

가까운 미래의 우리의 일은 어떻게 바뀔 것인가에 대한 생각

역사적으로 보면 사실 사람들의 일과 삶은 계속 변화해왔습니다. 미래형 업무(Future of work)이라고 하면 앞으로 어떤 방식으로 우리는 일을 하게 되고 회사와 조직, 그리고 개인에게 어떤 변화가 있을지는 말하는 용어같습니다.

미래형업무(Future of work)은 사실 범위가 너무 넓어서 가늠하기 어렵습니다. 로봇으로 가득찬 공장이나, 인공지능이 알아서 대응하고, 사람의 일자리가 사라지고 바뀌는 느낌의 추상적인 말보다는, 좀 더 구체적으로 우리의 업무공간, 워크플레이스와 회사에서 생기는 변화로 좁혀보겠습니다.

웰빙

첫번째는 사람들의 웰빙(Wellbeing) 입니다. 웰빙은 안전한 환경이나 복지도 있지만, 사람들이 원하는 유연성을 의미합니다. 업무활동에 있어서 좀 더 자유롭게 일하는 환경이 조성되며, 궁금적으로는 업무 강도나 일하는 방식의 변화가 필요합니다. 평균 근무시간은 줄어들고 있으며, 특히 코로나 이후에 업무 방식과 형태를 선택적으로 할 수 있게 되었습니다.

생산성

두번째는 생산성에 대한 집착(Productvitiy Paranoia)입니다. MS CEO인 사티아 나델라가 말했듯이 사람들과 조직의 피로도는 증가하고, 시간 당 더 높은 생산성을 요구하게 되었습니다. 이제 결과물 또는 기여에 대해서 좀 더 나은, 새로운 방법으로 성공적인 업무가 될 수 있도록 마련되어야 합니다. 단적으로 생산성을 증대없이는 과거의 조직 형태를 더이상 유지하기 어려워지고 있습니다.

가능기술

세번째는 새로운 기술의 지원(Supportive or Enabling Technology)입니다. 머신러닝과 자동화, 또는 둘의 결합으로 이루어지는 기술은 단순하고 반복적인 업무를 넘어서 인지적이고 창조적인 활동을 자동화할 수 있도록 만들어주 고 있습니다. 이러한 기술은 사람에게 새로운 능력을 제공하여 더 많은 일(Empowering human beings to do more)할 수 있도록 도와줍니다. 이미 우리는 코드를 작성하거나 번약이나 요약, 원하는 데이터를 추출하기 위한 쿼리, 메세지 등 다양한 분야에 이러한 새로운 기술을 활용할 수 있습니다.

아웃코드팀이 바라보는 미래는 데이터 자동화 같은 가능 기술을 이용하여,

많은 사람들이 한계없이 데이터를 사용하여 더 높은 성과와 창조를 만드는 미래입니다.


2
mins read
인사이트

노코드 기술의 미래

아웃코드팀이 바라보는 노코드 기술과 시장의 발전방향

노코드(No-code, Nocode)는 코드와 서버 등으로 만드는 소프트웨어와 다르게, 코드없이 만드는 소프트웨어이자 관련 기술들을 말합니다.

노코드 기술은 빠른 발전을 거듭하고 있는데, 관련 시장이 급속하게 팽창함에 따라서 새로운 변화들이 예상됩니다. 글로벌 시장을 분석한 결과를 바탕으로 한 우리가 보는 트렌드는 아래와 같습니다.

거시적인 전망

  1. 늘어나는 시민 개발자들: 노코드의 발전은 일반 사용자들에게도 개발의 기회를 제공할 것입니다. 시민 개발자들이 노코드를 통해 아이디어를 실현시키고 자체적으로 자동화하는 모습이 더욱 늘어날 것입니다.
  2. 더 나은 협업과 생산성: 노코드는 다양한 팀과 부서 간의 협업을 더욱 강화할 것으로 예상됩니다. 각자의 전문 분야에서 노코드를 통해 필요한 자동화를 빠르게 개발함으로써, 기업은 더욱 빠르게 혁신할 수 있을 것입니다.
  3. AI와의 통합: 인공지능 기술과 노코드의 결합은 더욱 강력한 기능과 펼ㅎ 가능하게 할 것입니다. 노코드를 통해 개발된 애플리케이션은 인공 지능 기능을 쉽게 통합하여 더 지능적이고 유연한 서비스를 제공할 것입니다.

보다 세부적인 트렌드들을 아래와 같습니다.

트랜드 1: 수직형 노코드

노코드하면 아마 Horizontal 한 서비스를 제공하는 것이 정설이었습니다. 예를 들어, 모든 요구 사항을 만족시키거나, 수천개의 앱을 연결하는 서비스 등입니다. 그러나 이런 범용 서비스는 기업의 다양한 실제 요구 사항들을 만족시키기에는 한계가 있습니다.

그러나, 최근에 등장한 혁신적인 노코드 서비스들을 Vertical한 서비스를 제공하고 있습니다. DevOps 분야에 특화된 노코드 서비스를 제공하는 Blink, Backend에 집중하는 Xano, 홈페이지에 집중하는 Webflow 등이 있으며,

트랜드 2: 기업 시장의 확대

노코드 홈페이지 툴인 웹플로우에 따르면 자신들은 아직 홈페이지 시장의 1% 이하의 점유율을 가지고 있다고 합니다. 현재의 노코드 시장의 주류 고객은 개인과 소형 기업들입니다.

새로운 중요한 변화는 규모있는 선두 기업들이 노코드 기술과 서비스에 주목하기 시작했고, 노코드 기술과 서비스의 도입을 올해 혁신 과제 중에 최우선으로 선택했습니다. 대형기업들이 유입은 기술의 발전과 시장의 판도를 바꿀만한 중요한 변화가 될 것입니다.

트랜드 3: 데이터의 부상

10여년 전에 만들어진 노코드 서비스들은 데이터 연동이 중요하지 않았습니다. 그때는 지금과 같이 API나 연동이 보편적이지 않았으며, 사용할 수 있는 API의 숫자가 매우 적었습니다. 이러한 서비스들은 Zapier, Integromat와 같은 이벤트 기반의 자동화(Event-driven workflow or automation)가 대표적입니다.

시장과 고객의 요구 사항이 복잡해짐에 따라서 데이터 워크플로우 또는 자동화 서비스들이 고속성장하고 있습니다. Tray.io, Paragon, Customer.io, Alloy automation, Outcode 등이 있으며 데이터의 통합과 자동화 시장의 핵심 서비스로 등장하고 있습니다.

이런 노코드 서비스 공급자 간의 중요한 차이는 데이터 인프라와 관련 기능의 차이입니다. 어떤 서비스는 아주 간단한 (폼을 만들어주거나, 이벤트를 연결해주거나) 기술 구조로 되어 있지만, 다른 진보된 플랫폼들은 강력한 데이터 통합 능력을 가지고 있습니다.

트랜드 4: 기술의 메인스트림화

소프트웨어 개발에서 노코드가 미친 영향은 기업에도 영향을 미치고 있습니다. 전통적인 소프트웨어 개발 방식과는 다른;

노코드 툴이 가지는 사용성, 간편한 유지보수나 언제든지 가능한 개선, 강력한 처리 성능, 그리고 파괴적인 생산성 등은 이제 노코드가, IT 와 관련없는 비지니스 유닛 일부에서 사용하는 특수한 도구가 아니라, 기업 전반의 개발과 운영 업무에 중요한 한 축으로 자리매김하게 될 것입니다.

다음에는 분야별로 어떤 노코드 회사와 서비스가 성장 또는 후퇴할 것인지 작성해보겠습니다.


2
mins read
인사이트

어떤 자동화 솔루션이 스타트업에 최적인가요?

아웃코드를 이용하면, 성장 초기부터 데이터 기반의 자동화된 업무를 중심으로 스케일이 가능하며, 감이나 직관에 의한 운영이 아니라 정교하고 고객이 정확하게 원하는 모습으로 성장이 가능합니다.

스타트업은 시간과 돈이 많이 들지 않으면서도 신속하게 만들 수 있는 간단한 자동화 솔루션을 필요로 합니다. 스타트업의 규모, 예산 및 리소스의 제약 사항을 충족시키기 위해 전통적인 자동화 시스템 뿐만 아니라 새로운 데이터 자동화 솔루션을 살펴보는 것이 중요합니다.

팀원들과 함께 협력적이면서도 자동화된 데이터 처리를 통해, 기존에 오래 걸리거나 어려웠던 많은 작업을 자동으로 완료할 수 있습니다. 그리고 이러한 솔루션의 비용과 시간은 전통적인 자동화 시스템보다 훨씬 적습니다.

스타트업은 본질적으로 제한된 자원을 가지고 있어야 하며 빠르게 일을 처리해야 하며, 개선하고 성장하고 프로세스를 최적화할 수 있는 방식으로 빠르게성장합니다.

예전에 복잡하거나 제한적인 워크플로우 소프트웨어를 고민했다면, 이제 더 간단하고 똑똑한 데이터 워크플로우를 기반으로 한 자동화된 운영을 구현할 수 있습니다.

  • 매출의 빠른 상승
  • 원하는 자동화를 즉시 생성
  • 운영팀과 개발팀이 함께 사용
  • 개발비용과 시간의 빠른 절감

아웃코드 데이터자동화앱

최신의 기술로 개발된 데이터 자동화 솔루션들은 강력한 데이터 처리와 통합 기능을 바탕으로 업무 시나리오와 조건에 맞는 자동화를 가능하게 합니다.

스타트업의 비지니스와 운영이 시작되면 데이터는 급증하며, 데이터를 활용하는 시나리오들이 늘어납니다. 이때 개발팀에게만 의존하게 되면, 리소스의 급격한 부하가 걸리고, 운영에서 필요한 즉각적인 자동화가 어려워집니다.

  • 회사 내 어떤 프로세스가 미비하거나 문제가 발생하면 팀이 구성되는데, 이들은 신속한 해결책을 유지하기 위해서 수동으로 실행합니다.
  • 운영의 최적화나 개선을 위한 아이디어를 현실화하는데 오랜 시간이 걸립니다.
  • 스타트업은 점점 수동 작업으로 가득찬 형태가 되며, 어떤 변화가 일어나면 문제는 다시 발생하고 다시 팀을 구성하고 악순환이 시작됩니다.

노코드 데이터 자동화는 스타트업의 운영과 일하는 방식을 바꾸는 일을 합니다.

  • 자동화가 어떤 종류의 데이터를 사용하던지 문제없이 가능합니다.
  • 개발팀과 운영팀이 협력하여, 필요한 데이터와 앱을 빠르게 조합하여 원하는 조건으로 자동화를 즉시 만듭니다.
  • 스타트업에 필요한 데이터베이스, 스프레드시트, 이메일, 알림톡, 친구톡, 협업툴, 인앱푸시와 API 양방향 연동까지 지원합니다.
  • 스타트업이 성장하고 데이터와 처리량, 빈도가 늘어나도 생성된 자동화를 변경할 필요가 없습니다.

2
mins read
인사이트

알림톡 자동화에 아웃코드를 써야하는 이유

카카오 알림톡, 친구톡을 자동화할 때 재피어와 아웃코드 비교

카카오 메세지 마케팅은 알림톡, 친구톡 등 카카오톡 메세지를 활용한 마케팅을 말합니다. 기존의 광고처럼 메세지를 일방적으로 전달하는 것 뿐만 아니라 버튼, 링크 등을 통해서 상담톡이나 구매, 홈페이지 방문 등 직접적인 고객의 행동까지 유도할 수 있는 특징이 있습니다.

친구톡이나 상담톡은 판매자의 톡채널을 추가한 이용자에게만 발송되며, 우리의 서비스에 관심있는 소비자들이 친구추가를 주로 합니다. 알림톡은 정보성 메세지로 다양한 정보를 카카오톡으로 발송하며 고객의 전화번호를 기준으로 발송됩니다. 카카오 메세지 마케팅의 최대 강점은 높은 클릭율입니다.

만약 자동화가 없으면 일일이 한사람씩 문자나 카톡을 보내야하는 불편함이 있는습니다.

요새 일잘러 분들이 자주 사용하시는 알림톡 자동화 툴이 있습니다. 외국 서비스인 자피어와 국내 자동화 서비스인 아웃코드가 있습니다. 오늘은 두 서비스간의 자세한 차이점을 알아보겠습니다.

기능

자피어는 상담톡 전환링크 등 일부 버튼을 제공할 수 없습니다. 외국 서비스이다보니, 한국 사용자에 맞게 기능을 제공하지 않는 부분이 존재합니다. (둘 다 솔라피라는 발송 서비스를 통해서 자동화합니다.)

또한, 자피어는 신규 레코드 등 이벤트가 있을 때만 발송이 가능하기 때문에 다양한 메세징 시나리오를 자동화하기 어려운데;

  1. 알림톡 템플릿 자동 인식 불가능
  2. 가입한 다음날 오전 9시처럼, 사용자 지정 스케줄로 발송하거나
  3. 구글시트에 있는 모든 데이터를 기준으로 발송하기 불가능합니다.
  4. 필터는 Task(Zap)을 추가해야만 하며, 비용이 2배로 발생합니다.

아웃코드는 국내 사용자의 니즈에 맞게 알림톡, 친구톡의 모든 기능을 지원합니다.

  1. 알림톡 템플릿 자동 인식
  2. 사용자의 지정 스케줄로 발송
  3. 구글시트, 에어테이블, 노션, 데이터베이스에 있는 모든 데이터를 기준으로 발송 가능
  4. 필터는 추가 비용없이 사용가능

아웃코드로는 다양한 메세징 시나리오를 구성할 수 있습니다.

성능

자피어는 랜덤하게 중간에 멈추고 실행이 중단되는 경우가 많이 발생합니다. 특히 실행 빈도가 높아지는 경우 많이 발생합니다.

아웃코드는 현재까지 실패율이 0%입니다.

가격

먼저 자피어는 연간요금제 기준 Task 1회 실행에 약 34원 정도입니다. 월 5만번 task 실행 기준 38만원입니다. (단, 트리거는 실행 카운트에 포함되지 않습니다.)

아웃코드는 연간요금제 기준 자동실행(Task) 1회 실행에 1원입니다. 월 5만번실행 기준 6만원입니다. 실행주기(트리거)는 실행 카운드에 포함됩니다. 실행주기는 최소 1분부터 최대 60일까지 설정가능하므로, 적정하게 조정하시면 됩니다.

지원

자피어는 한국어 서비스가 없으며, 고객 지원을 받기 어렵습니다. 요청 사항이 있어도 반영이 거의 되지 않습니다.

아웃코드는 채팅과 커뮤니티를 통한 적극적인 고객 지원을 하고 있으며, 요청 사항은 빠르게 해결해드리고 있습니다.


2
mins read
인사이트

헬스케어 서비스를 위한 메세징 자동화

개발하지 않고, 완벽하게 개인화된 맞춤형 메세지를 보내는 방법

디지털 기술을 이용한 헬스케어 서비스가 빠르게 성장하고 있으며, 새로운 스타트업이 등장하고 기존 관련 회사들도 유사한 서비스를 제공하고 있습니다.

주로 건강관리 앱을 통해서 이용자 스스로가 ‘건강관리에 필요한 정보를 얻고 이해하는 능력’를 가질 수 있도록 도와주고 있습니다.

참고로, 건강관리 서비스는 의료행위를 제외한, 사용자의 건강유지/증진과 질병의 사전예방을 목적으로 생활습관을 개선하고 관리를 유도한 서비스를 말합니다. (참조: https://blog.naver.com/mohw2016/221542161798)

건강관리 서비스를 위한 사용자 메세징은, 사용자의 데이터별로 개인화된 메세지 형태로 제공되며, 정기적으로 건강 관리용 정보(코칭, 체크, 건강편지 등)를 발송하는 형태입니다.

  1. 고객이 회사의 앱을 설치 후에 앱 내의 푸시메세지 또는,
  2. 사용자가 확인하기 쉬운 카카오 알림톡(또는 문자, 친구톡)을 보내거나,
  3. 위의 두가지 방식을 병행하는 경우입니다.
  4. 그리고 건강 인센티브나 프로모션 정보를 추가로 제공하는 경우도 많습니다.

개발 관점에서 보면, 회사의 데이터 시스템(주로 데이터베이스)에 업데이트되는 정보를 바탕으로, 완전히 개인화된 개별 맞춤형 정보가 담긴 메세지를 스케줄에 따라서 보내는 방식으로 많은 비용과 시간이 필요합니다.

예를 들어,

  1. 1일차, 2일차, 3일차… 120일차 등 순차적으로 건강관리 메세지를 오전과 오후, 또는 저녁에 발송하는데,
  2. 사용자의 데이터에 따라서 정확하게 세분하여 맞춤형으로 발송하고
  3. (선택) 발송기록을 시스템에 다시 업데이트

만약 이러한 메세징 시스템을 자체 개발한다면, 많은 리소스가 투여됩니다. 통합 메세징 기능, 데이터 소스와 실시간 통합기능, 대량 처리 기능 , 조건과 데이터에 따라 세분화하는 시나리오 기능 등 거대한 시스템을 구축해야만 합니다.

아웃코드는 이러한 문제를 해결하기 위해서 만들어진 노코드 서비스입니다. 복잡한 코드와 설치없이, 브라우저 상에서 클릭만으로 대량 메세징 자동화가 가능합니다.

  1. 비개발자도 쉽고 간편하게, 개별 데이터를 기반으로 개인화된 맞춤형 알림톡, 친구톡, 인앱 푸시 메세징를 작성하고 보내 수 있으며,
  2. 무제한으로, 고객정보와 조건별로, 필요한 메세징 자동화를 만들고 실시간으로 수정할 수 있고,
  3. 필터와 스케줄로 원하는 데이터만, 원하는 고객에게 원하는 스케줄로 보낼 수 있습니다.

아웃코드를 이용한 메세징 자동화는 헬스케어 스타트업 뿐만 아니라, 고객에게 자사 제품의 정확한 사용 관련 가이드나 케어 서비스를 제공하는 회사에서도 유용하게 사용될 수 있습니다.


2
mins read
인사이트

문제많은 재피어

데이터 자동화 관점에서 재피어의 성능과 데이터에 대해서 분석해보았습니다.
자피어의 빈번한 에러, 기능 제약 등으로 아웃코드를 찾는 분들이 늘어나고 있어요

고객 분들이 고민하는 부분들은 주로 아래과 같아요.

  • 자주 실행이 안되는 경우(예를 들어, 고객에게 발송이 정확하게 안되는 경우)
  • 데이터를 안보여줌 (실제 어떤 데이터를 자동화하는지 알 수 없음)
  • 이벤트가 발생할때만 자동화 실행(예를 들어, 어제 가입한 사람들에게 안내 발송 불가능)
  • 데이터 조회와 같은 기본적인 기능이 없고
  • 데이터를 처리하는 기능(1만건의 데이터를 읽어서 한번에 처리하는 기능이 없음)
  • 스케줄 기능이 없음(예약실행, 정기적 발송 등이 안됨)
  • 과도한 요금과 불친절한 고객 대응


자피어는 크고 오래된 회사에요. 트렐로 티겟이 만들어지면 슬랙으로 알람을 보내거나 하는 기능들을 분명히 유용해요.

그래도 고객 메세징, 데이터 통합과 같이 정확하게 실행되야하는 자동화에는 부담이 되요.

아래는 분석글이라서 조금 딱딱합니다. (건너뛰셔도 되요)

Disclaimer1: 업무 자동화나 데이터 자동화를 선택하시는 분들이 늘고 있습니다. 아래는 올바른 선택을 위한 사용자 가이드를 위해서 작성되었습니다.

Disclaimer2: 아웃코드팀 자체 테스트 결과이며, 일반 사용자를 위한 가이드 성격의 테스트입니다. 테스트 조건이나 상황에 따라 다를 수 있습니다.

벤치마크의 범위는 기업이나 운영업무에 필요한 데이터를 자동화하는데 적합한지 여부와 성능에 대해서 테스트를 해보았습니다. 아래의 몇가지 기준으로 아웃코드팀이 자체 테스트를 실시하였습니다.

  1. 구동 방식 (아웃코드 대 재피어)
  2. 데이터 처리방식 (아웃코드 대 재피어)
  3. 정합성 여부 (아웃코드 대 재피어)

아웃코드의 실행 방식은 연결되는 앱들과 독립된 구조를 가지고 있습니다. 아웃코드가 제공하는 트리거는 소프트웨어 개발과 데이터 정합성 측면에서 정확하게 작동하기 위해서 독립적으로 작동하며, 수동/스케줄/HTTP 요청(웹훅)으로 구동합니다.

이러한 방식은 데이터에 접근해서 전체 데이터를 로딩하는데 적합하게 되어 있습니다.

반면, 재피어는 구동방식은 독특합니다. 자동화를 Zap이라고 부르는데, 구동방식은 이벤트 트리거가 실행되면 순차적으로 Zap 실행되는 플로우 구조입니다.

이벤트 트리거는 “새로운 열이 추가되었을때"와 같이 연결되는 앱 상에서 이벤트를 기준으로 시작으로 합니다. 아래에서 보면 앱을 선택하고 앱의 특정한 이벤트를 설정하는 구조입니다.

두 번째 업데이트 주기입니다. 기본적으로 15분 간격으로 실행시키며, 팀 요금제 이상이 되어야만 1분단위로 이벤트를 감지합니다.

이러한 방식은 선뜻 편리하게 보이지만, 데이터의 관점에서는 문제가 발생할 수 있습니다. 즉, 새로운 열이 추가되었다는 정보를 정확하게 감지해야만 하는데 오류가 발생할 가능성이 있습니다.

자체 테스트를 해본 결과, 데이터가 순차적으로 업데이트나 변동없이 증가만하는 경우에는 정상 작동했지만, 15분 뒤에 확인해본 결과 아래와 같은 경우에 오류가 주로 발생했습니다.

  1. 트리거 테스트를 위해서 새로운 열을 추가한 경우: 트리거가 새로운 열을 정확하게 찾지 못하는 경우가 발생합니다.
  2. 데이터가 업데이트된 경우 (열을 몇 개를 지우고 다시 추가한 경우)에 정상작동하지 않았습니다.

(위의 어떤 경우에도 Warning은 뜨지 않았습니다. 그리고 Zap limit가 넘어가는 경우 실행을 자동중단합니다.)

데이터베이스는 프리미엄 커넥터라서 연결하지 못했지만, 재피어 커뮤니티에서 트리거 오류가 발생하는 질문들이 많고, 답변은 가이드를 참조해라는 수준이라서 정확한 해결책은 찾지 못했습니다. (엉뚱한 사용자에게 메일을 잘 못보냈다는 케이스 등)

https://help.zapier.com/hc/en-us/articles/8496260269965-Data-deduplication-in-Zaps

재피어에서 new data를 식별하는 방법이 나와있는데요, 어떻게 동작하는지 기술적인 설명이 거의 없어서 다시 찾아보았습니다. 결론은 구글시트나 데이터베이스, 앱에 따라서 식별자를 주지 않는 경우가 많기 때문에 정상적으로 구분할 수 있는 방법은 없고, 가능한 추정은 열의 숫자를 단순 카운딩 등의 방법으로 처리하는 것 같습니다.

두 번째로 데이터 처리 방식을 보면 재피어는 복수의 데이터를 처리할 수 없습니다. 재피어 이벤트 트리거를 보면 데이터가 중심이 아니라 이벤트가 중심입니다. 예를 들어, 데이터소스에서 100개의 데이터를 받아서 실행할 수는 없고, 오직 새로운 하나의 단일 데이터만 구동할 수 있습니다.

예를 들어, 재피어는 단일 이벤트가 발생하고 해당 단일 이벤트 정보만 다른 단일 이벤트로 넘겨서 구동시키는 경우, 유용할 수는 있지만 그 외의 경우에는 적합하지 않습니다.

https://community.zapier.com/developer-discussion-13/polling-get-all-data-before-looking-for-new-entries-updates-7977

아웃코드는 데이터를 식별하는 방법이 필터입니다. 데이터 전체를 읽어서 일자나 시간, 식별자, 이름, 비율 등 다양하게 필터링하고 해당 조건에 일치하는 데이터만 정확하게 실행시킬 수 있습니다.

예를들어, 스케줄을 5분간격으로 설정하고 필터링된 데이터(전체 데이터에서 사용자가 설정한 조건으로 필터링합니다. 신규, 업데이트는 물론 열별로 다양한 조건으로 설정가능합니다. )만 실행되도록 할 수 있습니다.

데이터 정합성은 데이터가 서로 모순 없이 일관되게 일치해야 함을 의미합니다. 기업이나 단체의 데이터를 자동처리하는 솔루션 입장에서는 오류가 있거나 정상 구동되는 경우가 없어야만 합니다.

특히 회사의 운영 데이터를 처리하는 과정에서 위와같은 정합성에 모순이 생기는 경우, 문제가 발생할 수 있으며 돌이킬 수 없는 부정적인 결과를 초래하기도 합니다.

아웃코드의 경우, 베타테스트부터 상용화 현재 데이터 처리 실패율이 아직까지는 0%입니다. 수백만건의 데이터를 안정적으로 자동처리하고 있습니다. (이제 수천만건으로 늘었습니다. )

재피어의 강점은 수천개에 달하는 앱의 이벤트를 코딩없이 연결하는데 있는 것 같습니다. 이러한 특징은 장점이 될 수 있습니다. 반면 데이터를 통합하고 연동하는데는 적합하지는 않은 것 같습니다.

또한, 팀원간의 협업 기능이 약하고 데이터를 직접 제어하거나, 내부 시스템과 연동하기는 어렵습니다. 가격적인 측면에서는 요금제가 복잡한데 Pro 요금제 기준으로 실행당 약 30원으로 적지 않은 금액입니다.

결론적으로 재피어는 데이터의 발생빈도나 양이 매우 적은 수준에서 간단하게 자동화된 이벤트 데이터를 자동처리할 수 있지만, 데이터의 발생빈도나 양이 많거나, 실시간으로 자동처리해야하는 경우, 미션 크리티컬(Mission Critical)한 경우에는 최적의 선택이 아닐 수 있습니다.

업데이트1: 저희 고객분들 중에서 재피어 유료를 사용하다기 아웃코드로 전환하신 분들이 늘고 있는데요, 그 분들이 알려주시는 재피어의 실행 실패율은 심각한 수준인 것 같습니다.

업데이트2: 얼마전에도 재피어에서 만든 자동화가 느닷없이 삭제되거나 초기화되는 경우가 종종 발생한다고 합니다.

2
mins read