서비스 고착도 (DAU/MAU) 한 번에 계산하기

Full name
11 Jan 2022
5 min read

아웃코드 자동화에서 조회화면을 쉽게 만들 수 있는데요, DAU와 MAU 조회화면을 만들어보겠습니다.

먼저, DAU와 MAU의 정의와 측정 방법은 아래와 같습니다.

  • DAU(Daily Active User): 일간 활성 사용자 수
  • MAU(Monthly Active User): 월간 활성 사용자 수
  • 측정 주기를 주단위로 하는 WAU((Weekly Active User: 주간 활성 사용자 수)도 있습니다.
  • 주의할 점은 사용자가 하루에 몇번을 방문/접속해도 1회로 측정해야 합니다.

특히 DAU/MAU로 사용자 고착도(Stickness)를 측정할 수 있는데요, 앱이나 서비스의 활성화를 측정하는데 이용됩니다.

DAU나 MAU를 비교하고 두 지표의 비율을 계산하면 서비스의 고착도를 더 자세하게 들여다볼 수 있습니다. 이 비율이 높을수록 사용자가 서비스를 더 자주 사용한다는 것을 나타냅니다.

  • Stickness = DAU/MAU = (일일 활성 사용자 수 / 월 활성 사용자 수) *100
  • 유명한 소셜앱의 경우는 50%에 달하기도 하고, 서비스의 성격에 따라 다릅니다. (페이스북 지표에 대한 글: https://backlinko.com/instagram-users)
  • 일반적으로 20%면 높은 편이고, 25%의 경우 매우 높은 편에 속합니다. 유명 금융 앱의 경우 24%, SaaS 28%, 전자상거래 22%, 미디어 26%면 상위권입니다.

아웃코드로 빠르게 DAU/MAU 조회화면 만들기

아래와 같은 DAU/MAU 조회화면을 직접 만들어보겠습니다.


아웃코드 자동화로 만든 DAU/MAU 조회 화면

1. 먼저, 아웃코드에 가입한 후, 커넥터로 측정할 데이터가 있는 데이터소스를 연결합니다. 주로 MySQL, PostgreSQL, MariaDB 등 상용 데이터베이스를 연결합니다.


2. 자동화에서 DAU/MAU 쿼리를 입력하기 전에, 아래의 샘플 데이터베이스의 데이터를 이용하도록 하겠습니다. 샘플 MySQL 데이터베이스는 이렇게 구성되어 있습니다.

alt text

3. DAU/MAU를 계산하기 위해서는 아래의 데이터를 기준으로 삼으면 됩니다.

  • log-in date (접속일자)
  • user id (사용자 고유 ID)


마지막으로, 아래의 쿼리를 필요에 따라 수정해서 아웃코드 자동화에 입력하면, DAU, MAU, Stickness 를 한번에 조회 화면을 직접 만들 수 있습니다.

SQL에서 DAU와 MAU를 한번에 구하는 쿼리 샘플

(위에 샘플 데이터베이스에서는 DAU를 측정하기 위해서는 login_history 테이블의 user_id와 created_at가 필요합니다. 아래 쿼리를 복사 붙여넣기하여 수정해보세요!)

WITH daily AS (
SELECT
  date_format(created_at, "%Y-%m-%d") AS day,
  date_format(created_at, "%M %Y") AS month,
  count(*) AS dau
FROM
  login_history
GROUP BY
  date_format(created_at, "%Y-%m-%d"),
  date_format(created_at, "%M %Y")
),
monthly AS (
SELECT
  date_format(created_at, "%M %Y") AS month,
  count(user_id) AS mau
FROM
  login_history
GROUP BY
  date_format(created_at, "%M %Y")
)
SELECT
daily.day,
daily.dau,
monthly.mau,
concat(
  round(daily.dau / monthly.mau * 100, 1),
  '%'
) AS 'DAU/MAU'
FROM
daily
JOIN monthly ON daily.month = monthly.monthorder BY daily.day DESC;

만약 MAU, DAU를 따로 구하고 싶으면 아래 쿼리를 사용하면 됩니다.


DAU (Daily Active Users) 구하기:

SELECT COUNT(DISTINCT user_id) AS dau
FROM user_activity
WHERE log_in_date = CURDATE();

MAU (Monthly Active Users) 구하기:

SELECT COUNT(DISTINCT user_id) AS mau
FROM user_activity
WHERE MONTH(log_in_date) = MONTH(CURDATE()) AND YEAR(log_in_date) = YEAR(CURDATE());

이 쿼리들은 현재 날짜를 기준으로 일일 및 월별 활성 사용자 수를 반환합니다.

Your might also like our other articles

운영업무와 밀접한 데이터 자동화
에어테이블과 구글시트, 데이터베이스 완벽연동 방법
비대면 바우처 3차 신청하시고, 아웃코드 할인을 받으세요!
아웃코드팀이 2022 데이터스타즈 (DATA-STARS)에 선정되었습니다!
우리가 데이터 자동화를 꼭 해야하는이유
우리의 매출을 폭발적으로 향상시키기 위해 필요한 것 (쿠팡처럼 개인화 메세지 제공하기)
새로운 비지니스에 데이터 자동화가 필요한 이유
가장 중요한 지표인 유지율(Retention rate)조회화면 만들기
노코드를 배우시고 싶은 분들을 위한 주요 포인트를 정리
API와 데이터베이스, 구글시트, 에어테이블, 노션으로 연동하기
마케팅 업무를 높은 가치를 만들어내는 전략적인 업무로 바꾸는 방법
구글시트와 알림톡을 연결하는 업무툴 만들기 (30개의 알림톡으로 최적화하기)
8월에 한국투자액셀러레이터에서 진행한 ‘[Outcode] Supercharging Productivity’ 세미나에 대한 내용을 담았습니다.
우리가 업무 중에 사용하는 데이터소스에 관한 통계
삶의 질을 높이는 자동화 아이디어들
아웃코드를 잘 사용하는 사람들의 공통점
가까운 미래의 우리의 일은 어떻게 바뀔 것인가에 대한 생각
전환율과 구매율을 높이는 데이터 자동화 활용하는 방법
아웃코드팀이 바라보는 노코드 기술과 시장의 발전방향
아웃코드를 이용하면, 성장 초기부터 데이터 기반의 자동화된 업무를 중심으로 스케일이 가능하며, 감이나 직관에 의한 운영이 아니라 정교하고 고객이 정확하게 원하는 모습으로 성장이 가능합니다.
사용자가 얼마나 자주 우리 서비스를 사용하고 있을까요?
카카오 알림톡, 친구톡을 자동화할 때 재피어와 아웃코드 비교
개발하지 않고, 완벽하게 개인화된 맞춤형 메세지를 보내는 방법
비대면바우처로 아웃코드 할인받아서 사용하기
아웃코드는 처음 사용하시는 분들이 자주 묻는 질문에 대해서 준비해봤어요.
직접 아웃코드 AutoML에 데이터를 넣고 데이터 분석을 시행해 보았습니다. 데이터는 Walmart Sales Forecast kaggle에서 가져왔으며 예시 1번처럼 매출 예측 모델을 생성했습니다. 아래 그림처럼 IsHoliday, Dept, Weekly_Sales, Temperature, Fuel_Price, CPI, Unemployment의 Column으로 구성되어 있으며 주간 매출인 Weekly_Sales를 예측합니다.
데이터 자동화 관점에서 재피어의 성능과 데이터에 대해서 분석해보았습니다.
이번 후속투자로 고객을 위한 기능 개발을 확대할 예정입니다.